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CALCULATION OF UNSTEADY TRANSONIC AERODYNAMICS 

FOR OSCILLATING WINGS WITH THICKNESS* 

By S. Y. Ruo and J. G. Theisen 
Lot kheed-G eorg ia Company 

SUMMARY 

An analytical approach is presented for determining some of the nonlinear characteristics 
of the transonic potential flow equation for finite thickness wings undergoing oscillatory 
motion at sonic flight speed in an jnvixid, shock-free fluid. The thickness effect is 
accounted for in the analysis through the use of the steady local Mach number distribution 
on the wing, and corresponding mean flow parameters over the wing are considered to be 
constants in a small finite region. This latter assumption, equivalent to the concept of local 
linearization , permits the nonlinear differential equation for the velocity potential to be 
reduced to a linear one with variable coefficients containing the local Mach number. By 
means of an appropriate coordinate transformation, the equation becomes identical with the 
usual linearized transonic unsteady-flow equation with constant coefficients. Numerical 
results for wings with finite thickness can then be obtained by any computational technique 
that is suitable for use with the transonic linearized theory. For demonstration purposes 
herein, the well-known sonic-box computer program is adopted. 

Stability derivatives and generalized aerodynamic force coefficients are shown for delta, 
rectangular and parabolic wing planforms over a range of reduced frequencies, with wing 
thickness and aspect ratio as parameters. Comparisons are made with available linearized 
theories and test data in the transonic flow regime, and reasonable agreement in trends is 
indicated, Relatively small thicknesses of 5 percent can have significant effects on gener- 
alized aerodynamic forces, e.g., on the order of 25 percent for rectangular wings of low 
aspect ratio, although the results for delta wings are much less. Still greater thickness 
levels may show a reversal of magnitude trend, according to these results, with corresponding 
effects possible for flutter instabilities. 

*Portions of this report were inc Iuded in AIAA Paper 73-316 which was presented at the AIAA 
Dynamics Specialists Conference, Williamsburg, Va., March 19-20, 1973. 



INTRODUCTION 

*The study of flutter and other aeroelastic responses of an aircraft requires adequate 
knowledge of the forces acting on three-dimensional wings-in oscillatory motion. Such 
aeroelastic problems are frequently critical in the transonic speed range. The physical prob- 
lem is governed by a nonlinear partial differential equation with nonlinear boundary condi- 
tions, for which an exact solution is not known to exist. The basic small perturbation 
equation governing the velocity potential for transonic flow over a thin wing or a slender 
body is well known (e.g., refs. 1 and 2). However, the nonlinearity whit h remains present 

prevents closed-form solutions from being obtained except in a few special cases (ref. 1). 
For a low-amplitude, high-frequency oscillation where the unsteady part is considered to be 
a small disturbance to the steady part, the steady-state properties can be completely 
uncoupled from the unsteady equation, and the governing equation for unsteady transonic 
flow can be linearized (refs. 2 and 3). 

Almost all unsteady transonic flow theoretical work lies within this framework of 
linearized theory where the thickness effect of the wing is neglected. However, oscillatory 
transonic aeroelastic instabilities of lifting surfaces (i.e., flutter) often occur at frequencies 

below the range of validity of the transonic linearized theory, thus.indicating a need to 
account for at least the more prominent effects of finite thickness. Recent studies (ref. 4) 
show that wing thickness, which enters into the mathematical nonlinearity, can significantly 
affect unsteady pressures in the supersonic range also. The object of this work, therefore, is 
to develop an appropriate method of accounting for the more important effects of finite wing 
thickness in order to predict transonic oscillating aerodynamic parameters at frequencies 
lower than those for which linearization is valid. The present study is limited to attached, 
shock-free flow. 

An important consequence of the previously mentioned linearization is the suppression 
of deviations in local Mach number from freestream value. Since these deviations have 
appreciable effect on propagation of pressure disturbances over the lifting surface, signifi- 
cant improvement in the theory may be accomplished by “recoupling” the steady and 
unsteady flow parameters in a manner that at least accounts approximately for variations in 
mean local Mach number caused by finite wing thickness. In the present development, this 

is achieved by considering all of the steady-flow parameters over the wing to be invariant 
within a small finite region. This latter assumption, equivalent to the concept of local 
linearization , permits the nonlinear differential equation for the velocity potential to be 
reduced to a linear equation with variable coefficients containing the local Mach number. 
By means of an appropriate coordinate transformation, the equation becomes identical with 
the,usual linearized transonic unsteady-flow equation with constant coefficients. Hence, 
numerical results for a lifting surface in the transformed space may be obtained by any com- 
putational technique that is suitable for use with the transonic linearized theory. For 
demonstration purposes herein, the well-known sonic-box computer program (refs. 5 and 44) 
is adopted. 
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Since this investigation is exploratory, the limitations on wing planform geometry im- 

posed by the sonic-box method of reference 5 have not been removed. The types of wings 
which can be treated are those having unswept trailing edges without control surfaces. Also, 
because of the transformation method used, the steady flow everywhere over the wing must 
not be very different from that of the freestream. The mean angle of attack, twist and cam- 
ber of the wing are considered to be small, and the Mach number distribution on the wing is 
assumed to depend only on the wing thickness. Therefore, the mean local Mach number on 
a corresponding point of the upper and lower wing surfaces is considered to be the same in 
the present work. However, the extension of the present method to wings with different Mach 
number distributions on the upper’ and lower surfaces is self-evident; 

Calculations using the present method were made to evaluate the thickness contribution 
to the unsteady aerodynamic forces by comparison with cases not having any thickness effect. 
The wings considered were: (a) rectangular wings with a bicircular-arc profile; (b)deIta 
wings with an elliptic lateral cross-section; and (c)parabolic wings with a double-wedge 
la tera I cross-set t ion. Comparisons are made with the sonic box method, for cases without 
thickness effects, as well as with available test data on finite thickness wings. 

A detailed description of the computer program is available as a supplementary report 
(ref. 6). 
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SYMBOLS 

aspect ratio or influence Coefficient 

dimensionless pitch axis location measured positive aft from most forward 
point on wing (reference length = b) 

B(x,y,z, t) = 0 defines the dimensionless body surface at any instant 
(reference length = b) 

reference length - wing centerline chord (dimension = L) 

local speed of sound (dimension = L/T) 

lift-curve-slope 

damping-in-pitch 

pressure coefficient 

substantial derivative 

box approximation of the wing planform 

exponentia I function 

dimensionless mode shape 

dimensionless length of box side (reference length = b) 
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h 

k 

L 

L 
ii 

M 

4 

Re 
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“0, 

UIVIW 

W 

x,y,= 

a 

l- 

Y 

V 

dimensionless distance from z = 0 (reference length = b) 

. . 
unrt vectors In x-, y-, z-direction, respectively 

imaginary part of the complex quantity 

reduced frequency, u.‘b/Uco 

unit of length 

generalized aerodynamic force coefficient 

local Mach number 

reads “order of” 

local flow speed, //m UC0 (dimension = L/t) 

real part of the complex quantity 

dimensionless planform area for full wing (reference area = b 2, 

dimensionless local semi-span (reference length = b) 

unit of time 

dimensionless time (reference time = b/UJ 

freestream velocity (dimension = L/f) 

dimensionless velocity components in x-, y-, z-direction, respectively 
(reference velocity = UJ 

wake 

dimensionless Cartesian coordinates (reference length = b) 

angle of attack 

acceleration parameter 

ratio of specific heats 

Ta -a 
G+rd+kZ, 

aY 
dimensionless gradient operator 
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V2 

6 

8 
ii 

CT 

Subscripts 

0 

1,2 

m 

d 

i,i 

XfYfZ 

*y,xt 

a2 a2 

ax2 
+-+a2 

ay2 az2 
, dimensionless Laplacian operator 

dimensionless amplitude, see equation (60) 

phase angle of the generalized aerodynamic force coefficients, (dimension = 
degree or radian) 

maximum semi-span-to-chord ratio 

thickness-to-chord ratio 

dimensionless small perturbation velocity potential, Q = ++ cp 

steady part of Q 

unsteady part of @ 

total velocity potential, 0 = U-(X+ 3 (dimension = L2/r) 

angular velocity (dimension = radian/T) 

denotes the magnitude of the oscillatory quantity 

denote steady and unsteady conditions, respectively 

denotes conditions of the freestream 

denotes doublet solution 

denote summation indices in x and y directions, respectively 

denote first-order partial derivatives 

denote second-order partial derivatives 

Superscripts 

+ denotes upper surface 

denotes lower surface 
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* 

A 

I II 
I 

denotes sonic condition 

denotes dimensional quantity or operator 

( i.e., (-> 
d imensiona I =( > dimensionless x beference quantity)) 

denotes vector quantity 

denotes transformed quantity 

denote first and second total differentiations 

UNSTEADY TRANSONIC FLOW EQUATIONS AND SOLUTIONS 

The Basic Equation for Potential Flow 

The exact, nonlinear, unsteady flow equation to be satisfied by the velocity potential 

a, as given in reference 7, is 

02n 1 a2 -- -’ 
[ 2 at 

-2 (Q +b(q2)+;i.? iq2 =o, 

C a7 ( )I 
(1) 

where G= %I and c is the local speed of sound. All quantities in equation (1) are dimen- 

sional. 

Smal I Perturbation Potential Equation 

In order to obtain the small perturbation velocity potential equation, the small pertur- 
bation potential @ is introduced by writing 

--- 
qcy,r,fi = uJX+ F(ix,y,z,t)l, (2) 

then, the velocity components are expressed as 
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The substitution of equation (3) into equation (2), with the introduction of the following 

set of dimensionless variables 

X 7 ‘f 
UT 

T 
x=-, y=-, z=-, t=- 

b b b b 
, and @ =- 

b 

results in the expression, 

v2m 
U2 U2 

- -q Dxx + 2$(, + @,,I = -q C2(yxf + Gylyt + QZ@,J 
C C 

+ 2(exexx + @ I 
Y YX + @z@zx) 

+ Qx(exmxx + ip ip 
Y YX + ipz”zx) 

+ @ (H 19 +rn@ 
Y YXY Y YY + @z+zy) 

@ (0 G 
Z x xz + mymyz + QzGzz) 3 * (4) 

Commonly, the perturbation is assumed to be so sma II that the quadratic and cubic terms on 

the right-hand side of equation (4) may be neglected in comparison with the linear term on 
the left-hand side. Thus, equation (4) simplifies to 

U2 ( ) U2 
1 -q + +m ++ 

xx 
- q (2ipxt + $t) = 0 . 

C YY zz c 
(5) 

This may be considered as a linearized equation with variable coefficients. A further sim- 
plification is usually made by replacing the local speed of sound with that of the free- 
stream by employing the Bernoulli equation: 

2 

$= 3 - (Y - 1) [mt + mx + ; (vQ)2] . 

co 

(4 

Thus, equation (5) becomes the well-known differential equation of acoustic theory 

(1 - M2J axx + lyy + mzz - 2Mz mxt - Mz ett = 0 . (7) 

The equation of motion has been considerably simplified by using the small perturbation 
method; but this linearized equation does not always yield appropriate solutions for some 
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physical flow phenomena in transonic flow. In the study of transonic flow a nonlinear term 

is normally retained to account for the nonlinear effects which usually occur in this flow 
regime. Landahl (ref. 2) d erived the small perturbation potential equation for unsteady 

transonic flow by retaining the first’- and second-order term contribution from the 
x-derivative term in the continuity equation and only the first-order term contribution from 
the y-, z-, and t-derivative terms. The resulting equation is 

-M~(Y+ l)@ 
X 1 mxx + ;P 

YY 
- MF,, = 0 . 

If the non-constant coefficient in equation (5) is approximated by 

U2 
2=q 

2”2- 2 

2 
‘?= M (1 - 2mx) 

C 

and only the first order terms are retained, equation (5) becomes 

(1 - M2)Qxx + lyy + ipzz - M2(2mxt + Iptt) = 0 . 

(8) 

(9) 

This equation maintains the mixed flow property usually observed in the transonic flow 

regime. It is not, however, in the form commonly used in transonic flow studies because of 

the presence of non-constant coefficients. Use of the freestream Mach number may be 
physically justified in place of the local Mach number in equation (9) as long as the local 
Mach number is not very different from unity. That is, both equations (7) and (9) are 

acceptable based on the analysis, but equation (7) does not preserve the mixed flow 
properties of the transonic flow problem. Thus, instead of equation (7), equation (8) is 
being used more frequently. 

Both equations (8) and (9) are capable of representing mixed flow but neither equation 
is easily tractable as required to satisfy the boundary conditions. These include the require- 
ments that the small perturbation velocity vanishes at infinity and the flow must be tangent 

to the solid surface. Also, in unsteady flow studies, the equation is further simplified and 
linearized by assuming that the unsteady potential is a small perturbation over that of the 
steady part. 

Unsteady Smal I Perturbation Potential Equation 

Under the assumption that the unsteady perturbation potential is small relative to that of 
the steady part, the steady and unsteady parts in the small perturbation equation may be 
completely separated when the unsteadiness (e.g., the frequent y of oscillation) is high. 
Subsequently, the unsteady form of the equation is usually linearized. 
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Constant Coefficient Equation.- Following Landahl (ref. 2) the small perturbation 

potentia I Q may be written as 

@(x,y,z,t) =+(xfyfz) + rP(XrYrWL (10) 

Then, for the case of oscillatory motion where the amplitude is much smaller than the thick- 
ness ratio, equation (8) becomes 

(11) 

and 

(1 - &‘p,, + vyy -I- cp,, - m:vxt - M& = M$Y + 1) & ($x’p,, , (12) 

where equations (11) and (12) correspond, respectively, to steady and unsteady transonic 
flows. Equation (11) involves only the steady flow quantities but equation (12) contains a 
coupling term between the steady and unsteady quantities. The term cpxcpxx has been 
ignored because cp is considered to be a perturbation on 4 , so ep,ccpxx is a higher order 
term than cp, +xx or ‘pxx $x. 

Landahl (ref. 2), f o II owing the fundamental development of Lin, et al. (ref. 8), showed 
that with the assumptions that cpt = e’(kcp,) and k >> /+,I everywhere in the flow, the 
coupling term on the right-hand side of equation (12) can be neglected. Thus equation (12) 
becomes linearized and completely decoupled from the steady flow quantity, as follows: 

ified to 

(1 - M$vxx + vyy + cp,, - 2$ qxt - M: cp,, = 0 . 

S Nince in transonic flow 1 - Mo? = e’ ($x) , equation (13) may be further simpl 

cp +v 
YY zz 

- 4 vxt -M&,= 0. 

Equation (14) is valid when 

11 -MI z8/(Q . 

(13) 

In reference 9, Miles presented an excellent discussion of the conditions for the 
simplification of the small perturbation equation in various flow regimes. 

(14) 

The freestream Mach number M, in equation (14) can be eliminated by a transforma- 
tion using Y = M,y and Z = M,z so that only the case when M, = 1 needs to be considered. 
That is, for sonic flow, 
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cp +cp -acp 
YY zz 

xt -qtt= 0. (15) 

When the wing is performing oscillatory motion, the unsteady small perturbation 

potential can be expressed as 

cp(x,y,z,t) =~o(x,y,z)eiwt=~o(x,y,z)eikt 

and equation (14) becomes 

cpo + cpo 
- Mz k (2icp 

0 
- k’P,) = 0 . 

YY zz X 

(14 

UI) 

Non-constant Coefficient Equation .- If the steady local Mach number M is taken to be 
the mean local Mach number, equation (9), with the relation in equation (lo), can be 
easily written as 

(1 -M%)xx++yy+ +zz=o 

and 

(1 - dvxx + vyy + cp,, - M2Pvxt + cp,,) = 0, 

(18) 

(19) 

where equations (18) and (19) govern, respectively, the steady and unsteady flow. 

By following the same reasoning used in obtaining equation (14) a similar equation can 

be derived for unsteady flow with non-constant coefficients, namely 

cp +cp 
YY zz 

- M2Pvxt + yt) = 0 I 

or 

cp +cp 
Oyy Ozz 

- M2k(2i cp 0 - k cpo) = 0 . 
X 

(20) 

(21) 

Equation (21) is the basic equation considered in the present study, to investigate thickness 
effects on the aerodynamic forces, in which the steady local Mach number is treated 
as a parameter. 
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Boundary Conditions 

Tongenc y Condition .- For an inviscid fluid flowing over a solid surface, it is assumed 
that at the surface the normal component of the relative velocity is zero and slip may occur; 
there is no boundary layer separation and no shock formation. Thus the tangency condition 
can be written as (ref. 10) 

DE o -= , 

D+ 

where B(x, 7, 2, 7) = 0 defines the body surface position at any instant, and 

D -= A+, L+, d+wL. . 

D+ ai- a2 a? a; 

For a small perturbation flow, equation (22) can be written in dimensionless form as 

Be+ (I + +x)Bx+ QyBy+ azBz=O, on B=O. (23) 

(22) 

To the first order, for a general thin body (ax << l), equation (23) can be approximated by 

Bt+Bx+ myBy+ gzBz =O, on B=O, (24 

and for a planar body, equation (24) can be further simplified if only the first order terms 
are retained: 

B, + Bx + Gz = 0, on z = 0. (25) 

Equation (25) is the linearized tangency condition for the planar case. 

For a thin body performing a small oscillation from its mean position, the instantaneous 
position of its upper surface may be approximated by (fig. 1) 

or 

z = hl(x,y) + h2(x,ytt) 

B(x,y,z,t) = z - hlbw4 - h2(x,y,t). (24 

By substituting equation (26) into equation (24), one obtains 
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@ z=hl +(h2 +h2)+@(h +h2), onB=O. 

X X t YIY Y 
(27) 

Since the body under consideration is thin and its departure from the mean position is small, 
the spatial derivatives of hT and h2 may be considered to have the same order of magni- 
tude and Qy is much less than unity; thus, equation (27) may be linearized. (i .e., eq. (25)). 
When equation (10) is introduced in the left-hand side of the linearized form of equation 

-WI I one arrives at 

and 

+z=hl 
X 

on z=O, 

CpZ 
= h2 + h2 

X t 

(28) 

where the steady and unsteady tangency conditions have been uncoupled. 

For a body performing oscillatory motion 

h2(wf t> = ho(xf y>e icut = ho(x,y)eikt, 

the linearized unsteady tangency condition in equation (28) may be written as 

cpO 
= ho + ikh 

0’ 
on z=O. 

Z X 
(29) 

Pressure Coeffic ient.- The linearized pressure coefficient written 
perturbation potential is 

Cp(X,y,O, t) = - q + Gx). 

in terms of the small 

(30) 

Substitution of the relationship in equation (10) into equation(30), with Cp written as a 
linear combination of the steady and the unsteady parts, results in 

and 

cpl(xfY’o) = - 2$Jx (steady part) 

C 
p2 

(x,y,O,t) = - 2(‘p, + cpt) (unsteady part) . 

(31) 

(32) 

If equation (16) is substituted in equation (32) the following expression is obtained 
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C 
PO 

= - 2(cpo + i k 'Pi) , 
X 

(33) 

where 

Cp 
0 

(x,y,O) = Cp2(x, y,O, t)emikt. 

For locations in the wake of a wing, Cp = 0, or 

. 
cpO 

+ikcp ~0. 
0 

X 

(34) 

Forms of the Nonlinear Term in Steady Flow 

In order to maintain the mixed-type flow in the study of steady transonic flow, the 
variable coefficient of the first term in equation (18) is often approximated by the general 
form 

(1 -M2)=(l -M3 -K$, , 

where K, which represents the coefficient of the nonlinear term, assumes several forms as 
listed below: 

K=(Y+ l)Mz 

K = (Y + 1) 

K=M2[2+(y - l)& 

1 -ME 
K= 

J 

~-- 
Y-l 
Fi+n-?+Tp 

K= +- M,2 (Y + 1) $xX(x*) 
xx 

K = (Y + 1) [B”(x*) * &n T] ( x - x*) 

@X 

(e.g., ref. 11 or eq. (11)) (36) 

(e .g . , refs. 12, 13, 14, 15) (37) 

(e.g., ref. 16) (38) 

(e 4 . , refs. 17, 18) (39) 

(e.g., refs. 19, 15, 20) (40) 

(e.g., ref. 21) . (41) 

Equation (38) can be obtained by expressing M 
2 2 

in terms of M, and utilizing the 
Bernoulli equation relating the local and freestream speed of sound, and retaining the first 
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order terms. When M, tends to unity, equations (36), (38), and (39) all reduce to equation 

(37). Equation (39) was obtained from the mass-flow consideration. Equations (40) and 
(41) were obtained more or less intuitively. Equation (40) forms the basis for the parabolic 

method. Equation (41) was needed to treat the body of revolution for the case of M, = 1 
only; the form of K would be different when the freestream Mach number is not unity. 

When the wing is of very small aspect ratio and 1 - M = e’($x), K may be set to 
zero (e.g., refs. 2, 22). 

Theoretical Methods to Obtain Numerical Results 

In all the practical unsteady transonic flow studies to date, only the sonic freestream 
flow case has been considered. This is because the linearized equation with constant coef- 
ficients, namely, equation (13) has been used and a simple transformation can be used to 
eliminate Ma in the equation. Then a similarity rule can be applied to obtain information 

for those cases where MCO is slightly different from unity. The linearized theory has been 
used with some success in comparison with test data. But due to the possible presence of 

wind tunnel wall interference, shock formation, and flow separation it is sometimes difficult 
to make a direct.comparison of the test data with the theoretical results and to identify the 
source of disagreement. Because of this, only the theoretical methods leading to numerical 

results are mentioned in the following paragraphs and no attempt is made to evaluate the 
validity of each method. 

Linearized Method .- Mangler (ref. 23) used the pressure doublet distribution to treat 
the delta wing at sonic speed, for small k, by letting M, approach un ity from the su bson ic 
solution. Miles analyzed the low aspect-ratio rectangular wing at sonic speed in reference 

24. Later, Runyan and Woolston (ref. 25) solved the case of an osc i I lating ret tangu lar wing 
at sonic speed by extending the kernel function method for general planforms in subsonic 
flow. In reference 2, Landahl extensively treated the delta and rectangular wings by 
solving the boundary value problem in a Fourier transformed plane. Using the delta wing 
solution as a tool, Landahl also studied low aspect-ratio wings, wing-body combinations, as 

well as wings of general form composed of straight segments. Davies (ref. 3) used lifting 
surface theory to treat general planforms for large k. An elliptic cone performing plunging 
oscillations at sonic speed was investigated by Albano and Andrew (ref. 26) for the effects 
of blunt leading edges and wing thickness. 

Rodemich and Andrew (ref. !5) developed a sonic-box method for non-swept trailing 
edge wings with arbitrary wing planforms; and, later, Stenton and Andrew (ref. 27) 
extended the method to include swept trailing edges with control surfaces. 

Parabolic Method.- In the linearized method the unsteady flow part has been com- 
pletely uncoupled from the steady part; that is, the thickness effect has been neglected. An 
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attempt to take the coupling of the steady part into account, at least to the first order, has 
been made by Teipel (ref. 28) f or two-dimensional flow and Liu et al. (refs. 29, 30) for 

axisymmetrical flow at sonic speed. This is based on the parabolic method concept (eq. 

(40)) introduced by Oswatitsch and Keune (ref. 19) for steady axisymmetrical flow. An 

equation in the form of equation (12) is used with the term hxqxx -ignored and with $xxcp, 
written as Tcpx/[Mz(y + 1)l. 

Proposed Method .- It has been shown by Kacprzynski, et al. (ref. 4), for supersonic 
flow that thickness effects on the lift, aerodynamic center, and flutter speed of a delta 
wing could be very significant. It is not difficult to conceive that the thickness could also 

have a marked effect on the aerodynamic forces on a finite wing over the transonic flow 
range. The thickness effect is introduced through the use of the local Mach number of the 
wing at its mean position in the unsteady, small perturbation equation. 

The proposed equation to be used in this investigation is equotion (20) in which M is 
the steady local Mach number representing the effect due to wing thickness. The solution to 
equation (20) satisfying the required boundary conditions is obtained by using the concept of 
local linearization attributed to Spreiter and Alksne (ref. 31) as described in the following 
set tion . 

LOCAL LINEARIZATION 

Local Linearization Concept 

The thickness of the airfoil, the formation of shocks, the interaction between the 
turbulent boundary layer and the shock, and the presence of separated flow may all contrib- 
ute important effects on the loading. The actual physical problem is governed by nonlinear 
partial differential equations with nonlinear boundary conditions, and defies exact solution. 
Hence, we confine ourselves here to an extension of the linear theory only to account for 
the effect of wing thickness insofar OS it produces a nonuniform mean flow and, possibly, a 
small locally supersonic region. This should be a significant improvement over the usual 
idealized lifting surface model. 

One method of improving the linearized theory is to account for the nonlinearity in an 
approximate fashion, based on the concept of “local linearization.” In this method, the 
effect of thickness is included only to the extent that the flow remains free of shocks, The 
underlying assumption is that the physical state, usually governed by nonlinear equations, is 
adequately described by related linear equations, with all parameters involved having their 
local values taken to be constants in a limited region. This involves replacement of the 
nonlinear equations with linear equations having variable coefficients. 
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These methods were introduced into aerodynamics in an intuitive way for steady flow by 
Spreiter and Alksne (ref. 31), and have now been rigorously ,val idated by means of the 

method of parametric differentiation by Rubbert and Landahl (ref. 32). This approach sug- 
gests that, in the case of unsteady flow, the calculations can be carried out with sufficient 

accuracy using the linearized equations which contain the local values of the steady-flow 
parameters. In his linearized theory, Landahl (ref. 33) cites evidence for the validity of 

applying the concept of local linearization to the case of unsteady flow. 

Moreover, in the case of supersonic flow, it was pointed out by Ashley (ref. 34) that a 

potentially simple way of improving the accuracy of unsteady-flow calculations is to use the 
linearized velocity-potential equation, but with the Mach number of the undisturbed flow 
replaced by the local value which varies spatially due to thickness, mean angle of attack, 

and/or camber-line shape. This work has been extended in two ways. Sankaranarayonan 
and Vijayavittal (ref. 35) applied Ashley’s (ref. 34) approach to flow past delta wings and 
found that the general effect of thickness is to reduce the flutter speed; meanwhile, 
Kacprzynski (ref. 36) examined the three-dimensional effects more fully. The above 

investigations are concerned with studying thickness effects in supersonic flow. Except for 
the work of Andrew and Stenton (ref. 37) relatively little information is available about the 
behavior of a finite wing with thickness in the transonic flow regime. 

It should be pointed out that one still earlier method for analyzing the transonic airfoil 
problem also introduces a concept similar to that of local linearization. Using the theo- 
retically exact hodograph transformation, Garrick and Kaplan (refs. 38, 39) developed 
velocity correction formulas which provide a basis for comparison of corresponding compres- 
sible and incompressible flows. In reference,40, Guderley discusses the extension of the 
hodograph method to the problem of threedimensional transonic flow around finite-span 
wings. However, the advantage of linearization is lost in the extension to three dimensions, 
and his results are limited to certain trends for the influence of aspect ratio for a special 
type of finite-span wing. Guderley cone Iudes that to find a complete solution of the non- 
linear equation for transonic flow around o wing of moderate aspect ratio would prove 
extremely cumbersome, if not impossible. 

Local Linearization Procedure 

The local linearization procedure starts with the unsteady transonic flow equation, 
equation (20), namely 

cp +cp YY zz - M2hxt + yt) = 0 t 

where the local Mach number M is given by 

1+yM2 c . P) ) 1 p1 

(42) 

(43) 
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Here, C is the pressure coefficient of the wing associated with the steady flow at its mean 

positionl)lM or C p1 will have to be provided either from theoretical results or from available 

test data. Th e q uantity M is all that is required to proceed with the sonic-box method 

solution (ref. 5). 

For oscillatory motion, equation (42) can be written as (see, e.g. eq. (21)) 

epo + “0 - M2k(2icp 
0 

- k’po) = 0 ; 

YY zz X 

Then, by introducing the following modified Prandtl-Glauert transformation 

c;=Mhy) l Y 

;=M(x,y) . z I 

(45) 

into equation (44) and neglecting the spatial derivatives of M (here M is considered as a 
parameter), one obtains the following 

Go--+ co- - 2ikqo + k2Go = 0 

YY zz X 

where 

60(x,~,~ = Mb, y) cp,b, y, 4. 

(46) 

(47) 

This equation is in the form that Rodemich and Andrew (ref. 5) used in their sonic-box 
method. Thus a wing properly transformed according to equation (45) may be treated by the 
sonic -box method in the transformed space. Even though the local Mach number may be 
differerit from unity on a given wing, the consideration of M here is not thought to be the 
primary effect which changes the type of flow; rather, it is considered to be a parameter, 
with the local disturbances unable to travel upstream for the cases under study by virtue of 
the Mach freeze. 

The corresponding linearized tangency condition becomes 

@ON 
=Fo + ikK 

0 
Z X 

where 

(48) 

x(x,;;) = ho(x,yL (49) 
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Limitations of the Proposed Transformation 

The sonic -box method developed by Rodemic h and Andrew (ref. 5) is restricted to a 
wing where no part of it is downstream of any part of its wake(s). That is, the slope of the 
leading ‘edges of the wing ds/dx is not allowed to change signs as shown in figure 2. The 
leading edge shown in the positive g quadrant is unacceptable because its slope changes 
sign between the apex and the trailing edge of the wing. While the slope of the leading 
edge shown in the negative yquadrant does not change sign, thus it is acceptable. Since 
the sonic-box method is applied to the transformed wing in the present study, this restriction 
may be expressed as 

or, written in the quantities for the physical plane, 

*S(X) = - M(*s) * 
g k(X) 1 

& [M&)1 ’ 
(50) 

where M(*s) represents the local Mach number along the leading edges. 

In addition to the limitation shown .in equation (50), there is another limitation con- 
cerning the spanwise Mach number distribution. That is, at x = constant, 

iLO 
dY 

for o< Iy\ <s . 

Figure 3 illustrates the nature of the acceptable and the unacceptable functional forms. 
In the sketch, the relation $7~ y * M(x,y) is drawn as a solid line. As can be seen in the 

i Ilustration, the transformed local span in 7 2 0 is single-valued (acceptable) whereas that in 
7” 0 is multi-valued (unacceptable). The multi-valued transformation creates a type of 
fold-over wing in the transformed space which makes this method inapplicable. This condi- 
tion may be relaxed somewhat if at those points where the values of djv/dy = 0 occur within 
the range 171 < ]?I , yonly d eviates slightly from the required monotonically increasing 
nature as y is transformed into 7 from 0 to s. 
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SONIC-BOX METHOD 

Although any computational technique that is suitable for use with the linearized 
transonic theory could be applied in combination with the present method, the basic com- 
puter program chosen for use in this study was that originally developed by Rodemich and 
Andrew (ref. 5) and known generally as the “sonic-box” program. Since equation (46) and 
the boundary condition, equation (49), to be treated in the transformed space are in the 
form that was used in reference 5, the principal task required to account for the thickness 
effect is the transformation of information between the physical and the transformed spaces 
according to equations (45), (47), and (49). The mathematical development of the numerical 
procedure of carrying out the integration will not be duplicated completely here; however, 
the pertinent equations are included for the purpose of continuity. Since the wing to be 
considered is in the transformed space, the quantities in the transformed space rather than 
that of the physical space are used in the description of the sonic-box method. 

Solution Procedure 

The basic solution satisfying equations (20) and (29) for a thin wing having its mean 
position lying in xv-plane (see fig. 4) representing a point doublet with its axis oriented 
in T-direction is 

cp,(x,gJ = ik ‘7 --. 
27-r ,2 =P 

X 

Then the solution to equation (20) for a distr ibution of doublets can be written as 

[-qx+Y2y2)], x>O. 

where p(x,y), representing the doublet strength, may be any function such that the integral 
exists. 

The downwash for a point (x,y) on ^i= O+ of the wing mean plane, may be obtained 
from equation (52) 
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or 

where 

and 

Z(x,y,O+) = lim + & lGol = lim +& 
Y-0 Y-0 

. qd(x-5, ;;-q, :)d%dn 

qx,^;,o+, = rr ~(5~0 . $(x-5, ‘;;-rl, O+)d<drl 

w”+Y 

$(x,7,0+) = lim +& Gd(x,~,Y) 1 
Y-0 

0 I x50 
= 

&$a exp [-iik[x+c)] , x>O 

P(G) = GoG,O’, . 
Thus the boundary value problem becomes 

4x,;,o+, =JJGom,o+) l $(x-5, r-n)d!,dy, for (x,3 in 7, 

and from equation (34) 

L+ ax ik ~o(x,~,O+) = 0, for (x,‘;, 

Doublet Box Method 

i nW. 

(53) 

(54) 

(55) 

The amplitude of oscillation of the moderately thin wing under consideration is assumed 
to be small. The mean position of the wing is considered to lie approximately in the xy- 
plane with its nose at the origin and with an unswept trailing edge. The freestream is 
assumed to be parallel to the x-axis and at a Mach number of unity. The value of the 

unsteady potential on the wing may be found by using equation (54). 

To get an approximate solution of equation (54), let the x7-plane be covered with a 
grid of square boxes with the box edges paraLlel to the x- and y-axis. Let the region E be 
composed of all boxes whose centers lie in S. Thus, E is an approximation to S by boxes. 
The potential V. at each box is assumed to be constant, i.e., qoii = constant at (i,i)-th 

box Eii. The tangency condition is applied to the center (xi, yi) of each box Eii in E and 
the region of integration is replaced by E. Thus equation (54) gives a system of linear 
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algebraic equations for the q. ‘s: 
ii 

c e 
*I .I 0 J-l- 

i’i’ E 
“(‘i - 5, s - ~d5drl= ~(xi, ~~ 

’ II 
i’i’ 

or 

C NO, ~i-i’~)Vo~~, = uw(xi, y$ - C c A(i-i’ , Ii-i’ \)Fo 
‘1 
I ‘I i’<i i’ i’i’ 

(56) 

(57) 

where 

A(i-i’ , Ii-i’ I) = ff Y(xi-5, yi-n)dZdn. (58) 
E i’i’ 

If the wing is symmetric about the x-axis, then only modes of oscillation that are sym- 

metric or antisymmetric in y need be treated. Thus one only needs to consider one-half of 

the wing in a computation. For symmetric modes, equation (57) becomes 

c [A(O, 1 i-i’ \) +A(O, i+i’ -I)% 
i’>l 0 

ii’ 

=;(xi, y$ _ c c [A(i-i’, Ii-ill)+ A(i-i’, \i+i’-TIEo I i r l* (59) 
i’<i i’ 21 i’ i’ 

The equations for i ~0 are implied by i 21 . 

For antisymmetric modes, equation (59) applies, with the sums of values of A replaced 

by differences. 

DESCRIPTION OF THE COMPUTER PROGRAM 

A major part of the computer program used in this study is adapted from that developed 
by Rodemich and Andrew in reference 5. The capability of the original sonic-box computer 

program is retained and, in addition, it has been extended to include nonlinear thickness 

effects. This is accomplished in an approximate manner by applying the local linearization 
concept in conjunction with the mean local Mach number distribution which is assumed known. 

The wing with thickness is transformed into a wing without thickness in the transformed 
space using the relations in equation (45). The equation to be solved and the boundary 
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condition to be satisfied in the transformed space become those shown in equations (46) and 

(49), respectively. Then the sonic-box method is applied directly, since the linearized 

theory is applicable in the transformed space. 

The leading edge of the planforms of both the physical and transformed wings must not 
have any local maximum in the spanwise direction within the range 0 5 x < ,b; i .e., the 
local semi-span must not decrease as x increases from the nose to the trailing edge. The 
leading edge of any given wing planform is represented by a finite number of straight line 

segments and, based on this, the area is then approximated by a grid of square boxes. In 

each box, represented by its center, the flow parameters are considered to be constants equal 

to their values at the box centers. The trailing edge of the wing must be unswept *, and 

there must be no control surfaces. The computer program as presently formulated considers 

only the symmetric mode * of oscillation, having the xz-plane as the plane of symmetry, 

and the local Mach number at a corresponding point on the upper and lower wing surfaces 
is taken to be the same. 

The doublet potential at the center of each box in the transformed space is obtained by 

using equation (54), with a known downwash, from the sonic-box computer program. Then it 
is converted into the doublet potential of the physical wing by applying equation (47). That 
is, the doublet potential at the center of each box in the physical space is found by locating 
the corresponding p0in.t in the transformed space and applying the inverse transformation. 

The inversion results in a non-uniform array, but this method applies interpolation with a 
polynomial fitting procedure to the data before further usage for integrations. Equation (33) 

is used in the calculation of the unsteady pressure coefficient and the generalized aerody- 
nam%s force coefficients are computed from the following expression (ref. 2): 

L 5= 4 
ii 5 ss 

(‘p, + ikcpo); fi dxdy , (60) 

s .x 

where the oscillatory displacement in the z-direction from the mean position of the wing is 
written as 

h2(x, y, t) = ho (x, y) eikt = bifi(x, y>e ikt 

h,(x, y) 
so that the mode shape-can be related as fi (x, y) = - I (61) 

9 
with ho as the nondimensional amplitude in z-direction, and & as the nondimensional 

amplitude of the - th I 
I mode. 

The stability derivatives are calculated by using the following relationships: 

* This restriction is carried over from reference 5 and is not an essential limitation of the 

present method. 
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CL,= 
-ilm [L,,l (62) 

‘M6 + ‘M 
= t Im CL22 - a(L21 + L12) + a2L1 1 1 . 

q 
(63) 

The standard output of the computer program consists of the generalized aerodynamic 
force coefficients. In addition to these, the Mach number, downwOsh, potential, as well as 
the lifting pressure distributions can be printed out if they are desired. 

RESULTS AND DISCUSSION 

Typical unsteady aerodynamic results have been calculated, using the above local 
I inearization procedure, for a variety of wing planforms and thicknesses. Such studies are 
necessarily limited by the availability of steady-state data on local pressure or Mach number 
distributions for any desired wing shape or thickness, since this is required as input to the 
basic calculations. The planforms selected for this study are rectangular, delta and parabolic, 
and the steady state Mach number distributions over these wings in a sonic flow field are avail- 
able from reference 41. This information is furnished to the computer in the form of pressure 
coefficient or Mach number distributions at a group of selected points on the wing. The data 
are then fitted with a pre-selected polynomial form representing the Mach number as a func- 
tion of x and y using the least-square method available in the original sonic-box program. 

The standard output from the analysis is in the form of amplitude and phase of the 
generalized aerodynamic force coefficients as a function of frequency. Typical results are 
shown in figures 5 and 6 for rectangular and delta wings, respectively. The rectangular 
wing has a. biconvex airfoil section , with an aspect ratio A = 2.0, and is pitching about an 
axis along the leading edge. Based on a distribution of 25 boxes along the centerline chord, 
parts (a) and (b) of figure 5 indicate that for sonic flow conditions, quite large reductions. 
in generalized force coefficients are possible for rectangular wings of thickness 7 = .0521 . 
However, changes as great as 25 percent are larger than anticipated, especially at the 
higher frequencies. In the absence of directly correlated tests, with finite thickness rectang- 
ular wing models, these results should be used with caution since some limitations of the pro- 
gram are more pronounced for this case. The steady Mach number distribution is quite rapidly 
varying, particularly near the leading edge of this wing (ref. 41), so in the transformed 
coordinates the planform is severely distorted. The box size used may be too large to proper- 
ly define these variations. Also, the requirement of the linearized theory that the reduced 
frequency satisfy the relationship k >> 1+x,1 is probably violated by the large velocity dis- 
turbances near the leading edge. This may explain the apparent lack of convergence in 
magnitude for the two 1 LT 11 coefficients in figure 5(a) at frequencies near k = 1 .O. At 
high frequency, the linearized theory is expected to be a.cc’umte, independent of thickness 
considerations. However, the residual differences between the two results for the higher k 
values used here may exist because that maximum k value is still insufficiently high to insure 
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convergence. This possibility may best be seen in figure 5(b) where good convergence is 

exhibited by the phase angle 022, and I L221 s h ows some asymptotic tendency at the highest 

frequency calculated. Further study.of the effects of box size is needed for rectangular wing 

cases. 

A typical variation of the generalized aercdynamic force coefficient for pitching moment 
due to pitch oscillations of a delta wing configuration of aspect ratio A = 1.5 are shown in 
fig’ure 6. A distribution of 40 boxes along the centerline chord was used in the computations. 
This wing has an elliptic cross-section in a plane perpendicular to the chordwise axis, and it 

is assumed to be pitching about the apex, or the most forward point of the delta wing; i.e., 

a = 0. Lift and pitching moment magnitudes and phase angles show very little change with 

thickness increase as compared with the rectangular wing values. At medium-to-high reduced 

frequencies, increases in absolute values are of the order of 5 percent, with the maximum 
occurring for 10 percent thickness. Over most of the frequency range, a further increase to 

15 percent thickness results in a reversal of trend, or less increase in magnitude of the force 

coefficients. As will be discussed later, however, variation of pitch axis to more aft loca- 

tions may affect the percent change markedly for a delta wing. 

The magnitude of the unsteady pressure distributions for this delta wing are presented in 
figure 7 for both pitching and plunging motions at reduced frequency 0.1. The pressure 

variation for a change from zero to 10 percent maximum thickness is not very large except 
near the trailing edge. The changes are generally greatest where anticipated based on con- 

sideration of local flow acceleration due to the addition of thickness. 

Comparisons are made in figure 8 with the low-frequency approximation in Landahl’s 

linearized theory (ref. 2, chapter 3) for a delta wing without thickness effect. The 
trends of increasing damping-in-pitch (Ce +.CM~), with increasing frequency are qualita- 

tively in good agreement for the higher aspect ratio case. For the lower reduced frequencies, 
larger effects on damping-in-pitch are possible due to changes in either thickness or pitch. 

axis location, as shown in figures 8and9. The differences in absolute magnitudes for the 

zero thickness cases, particularly at higher frequencies’, may be rationalized by considering 
limitations of both linearized methods compared in the figures. Landahl’s approximate low 
aspect-ratio method should be adequate at moderately low frequencies for these two cases 
(A = 1.5 and A = 3.0). H is solution has an upper frequency limitation, and this may exe- 
plain part of the differences in figure 8. However, the local linearization method also has 
a severe limitation since the potential differences between the “locally constant” function 
over each of the boxes do not cancel at the edges of adjacent boxes when the integration is 
carried out around the boxes. Th’ IS implies some error in the surface integral which increases 
with the size of the box used. Th’ IS may explain the lack of convergence with Landahl’s 
linearized theory at the higher frequencies. 

As mentioned previously, the delta wing thickness does not appear to affect the results 
as much as for the rectangular wing at the higher reduced frequencies. It is believed, how- 
ever, that some additional effects would be seen if an improved fitting procedure were to be 

employed. The steady flow results used (ref. 41) indicate a less rapidly varying func- 
tion over the surface of the delta wing, but the least-square fitting method in the original 
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sonic-box program essentially reduces the pre-determined polynomial into a linear form. 
The more rapid variations at the leading and trailing edges were ignored. Thus, the trans- 
formed planform was only slightly different from that for the delta wing, and only small 
thickness effects were therefore observed. Further study is planned using improved fitting 

techniques to determine more accurately the sensitivity of the program to delta wing 
thickness variations. 

Only a small amount of-test data are available for oscillatory transonic flow with these 

configurations. The data scatter is generally great, but the more reliable appearing data at 
M, = 1 in references 42 and 43 are shown in figures 9, IO, and 11. The data for delta 

wings with finite thickness indicate that both trend and magnitudes of the stability derivative 
shown in figure 9 may be in reasonably good agreement at intermediate reduced frequencies. 
The chordwise pressure distributions plotted in figure 10 show better agreement at the outer 
wing stations. Data from the same tests (ref. 43) in figure 1 l(b) also show good 
agreement with the analysis for lift-curve slopes as a function of frequency. Trends with 
wing thickness are not observable because of scatter in the test data. 

Only results based on thin-wing theory are available for comparison with the rectangular 
and delta wing calculations in figures 11 (a) and 11 (b), respectively. Landahl’s low- 
frequency approximation (ref. 2, chapter 4) compares quite well for the rectangular 

wing in figure 1 l(a) at low reduced frequencies. Similarly, Davies’ theory (ref. 3) 

agrees very well with results for the delta wing at aspect ratio, A = 1.5, shown in figure 
11 (b). 

The capability of the program to represent other planforms is demonstrated in figure 11 (c), 
where a six-segment approximation to the leading edge of a parabolic wing and a distribution 
of 40 boxes along the centerline chord were used. The cross-section consists of a double 

wedge in a plane perpendicular to the chordwise axis. For this case, as for others mentioned, 
the polynomial representing the Mach number distribution on the wing obtained from the least- 
square method was not believed to be of adequate accuracy. Improved procedures are avail- 
able for fitting such functions, and it is recommended that the program be checked for each 
case unti I modifications can be made in the future. 

Another question concerning the sonic-box procedure in present use is concerned with ’ 
the convergence of the magnitude and phase angle as related to the number of boxes used 
to represent the planform. A typical study which should be made for each new configuration 
is shown in figure 12. It is apparent that the generalized force coefficient converges ade- 
quately for the 40 boxes employed in the delta wing cases studied herein. However, at 
higher frequencies it may be desirable to use a larger number of boxes to properly represent 
the wing planform. For the case with thickness effect, this may be especially needed because 
of the greater complexity of the leading edge of the transformed wing. 

Because of the transformation technique adopted, certain types of wings for which a one- 
to-one transformation cannot be made must be excluded from treatment by the present approach. 
However, this difficulty can be alleviated by using a locally varying source strength distribu- 
tion, related to the local Mach number, in place of the transformation presently employed. 
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(See Addendum to this report. ) 

Quantitative evaluation of the local linearization procedure introduced here for unsteady 
flow cannot be completed until other theories with transonic thickness effects are developed, 
or until more reliable test data become available for comparison. 

CONCLUDING REMARKS 

The local linearization concept is applied to the determination of approximate wing 

thickness effects in unsteady transonic flow using the sonic-box computational procedure. 
The principal argument in this concept is that the mean-flow properties in a sufficiently small 

region on a wing may be treated as essentially constant. Thus, the governing potential-flow 

equation becomes linear with variable coefficients. A coordinate transformation then reduces 

this equation to linear form with constant coefficients, which is in the same form as the well- 

known I inearized transon ic-flow equation. Hence, numerical results in the transformed space 

may be obtained by any computational technique that is suitable for use with the transonic 
linear theory. For demonstration purposes herein, the well-known sonic-box computer pro- 

gram is adopted. 

Sample calculations for delta, rectangular and parabolic wings are made to demonstrate 

the capabilities of the program and to show the contribution of wing thickness effects to 
various unsteady flow quantities. Comparisons are made with results from I inearized theories 
as well as with available test data, and reasonable trends with thickness effects are indicated. 

The results for. low aspect-ratio delta wings, having el I iptica I spanwise cross-set tions and 
pitching around the apex, indicate that thickness causes rather small changes in pressure, 

damping-in-pitch, and generalized force coefficients relative to those calculated from linear- 

ized theory using the sonic-box method. 
do not vary monotonically with thickness; 

However, for this particular wing, these quantities 
so this trend reversal needs further study with other 

cross-sectional geometries and other pitch axis locations before firm conclusions can be made. 
The zero thickness results for both the delta and the rectangular wings are in reasonable agree- 
ment with the corresponding ‘theory by Landahl for low aspect ratios over the lower and medium 
range of reduced frequencies. 

Although calculations for a low aspect-ratio rectangular wing indicated thickness effects 

as large as 25 percent, caution should be exercised in interpreting these results since certain 
limitations of the computer program and the transformation used, in their adopted forms, are 
most pronounced for this configuration. The wing forms which can be treated with the present 
program are limited to those having a mean local Mach number distribution not very different 
from the freestream value. Those wings which cause a multi-valued transformation (i.e., a 
fold-over wing in the transformed space) must be excluded. In addition, only unswept trail- 
ing edges without control surfaces are allowed by the present computational technique. 
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The fold-over limitation and edge conditions associated with the transformation method 
can be removed by using a modified source strength distribution, related to the local Mach 
number, in place of the transformation presently employed to account for thickness effects. 
Also, improved accuracy may be obtained by replacing the least-square surface-fitting pro- 
cedure used in the original sonic-box computer program with better approximations. 

The limited amount of test data available for delta wings in unsteady transonic flow 
show reasonably good agreement with the analysis for finite thickness cases and for variations 
with reduced frequency. Absolute magnitudes cannot be evaluated very well until more 
reliable test data are obtained. 
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ADDENDUM 

ALTERNATE MODIFICATION OF THE SONIC-BOX METHOD FOR 
UNSTEADY FINITE WINGS WITH THICKNESS EFFECTS 

By S. Y. Ruo 

SUMMARY 

An analytical .approach is presented for determining some of the nonlinear characteristics 
of the transonic flow equation for finite thickness wings undergoing oscillatory motion at sonic 

flight speed in an inviscid, shock-free fluid. The thickness effect is introduced into the basic 
solution through the variation of the mean local Mach number on the wing, and the flow 
parameters over the wing are considered to be constants within a small finite region. Thus, 
the nonlinear differential equation can be reduced to a locally linear one with variable 

coefficients. 

The equations required to obtain numerical results are reduced to forms similar to those 
used in the well-known sonic-box method computer program. Thus, with some minor modifi- 
cations to the original computer program, the transonic flow aerodynamic force coefficients 
with thickness effects can easily be obtained. 

INTRODUCTION 

It is well known that a closed-form solution to the small perturbation equation governing 
unsteady transonic potential flow over a finite wing is not easily attainable. The previous 
developments for dealing with the problem of transonic flow over an oscillating wing have 
largely been restricted to linearized theories (see e.g. refs. 2 and 3). These methods 
are a result of uncoupling the unsteady motion from the steady part and are generally limited 
to high frequency cases. Since the steady part is completely uncoupled from the unsteady 
equation, the thickness effects cannot be accounted for by using the linearized theory. 

In the work by Kacprzynski, et al. (ref. 4), it has been indicated that thickness, 
which enters into the mathematical nonlinearity,, .can significantly affect unsteady pressure 
in the supersonic range. More recently, efforts to approximately incorporate the thickness 
effect in unsteady transonic flow analysis have been made by several investigators (refs. 
28, 29, 30, 45, and 46). Among the approaches used are extensions of the concepts lead- 
ing to the parablic and local linearization methods introduced for steady transonic flow, 
respectively, by Oswatitsch and Keune (ref. 19) and by Spreiter and Alksne (ref. 31). 

29 



In the analysis based on the parabolic method concept (refs. 28, 29, 30, 45, and 

46), the thickness effect is considered in a global sense and is determined by the overall 
body shape at its mean position. This approach can be improved by modi+ing the global 

thickness effect lo a locally dependent one to refine the physical interpretation of the thick- 
ness effect in the unsteady transonic flow analysis. In the main part of the present work, 
which is based on the local linearization concept, the thickness effect is considered in terms 

of the mean local Mach number. That is, instead of the freestream Mach number, the mean 
local Mach number is used in the governing equation, which is then a linear equation with 

variable coefficients. With an appropriate coordinate transformation in conjunction with the 
local linearization concept, the equation is converted to one with constant coefficients, and 

the well-known sonic-box method (ref. 5) is used in the transformed space to obtain 

the numerical results. During the course of this study, it was found that the transformation 

used was not always adequate, especially when the Mach number variation over the wing is 
large. In such a case, a one-to-one transformation may become impossible, thus limiting 
the capability of the above technique to account for thickness effects in unsteady transonic 
flow analysis. In both approaches, the parabolic and the coordinate transformation methods, 

the thickness effect is considered to be independent of the body unsteadiness, and only the 
steady conditions at the mean wing position are taken into account. Additionally, the 
solutions are limited to & = 1 .O, zero mean angle of attack, shock-free attached flow, 
and wings with trailing edges which are unswept and without control surfaces. 

The purpose of this Addendum is to investigate the possibility of formulating the problem 
directly from the doublet potential expressed in terms of the local Mach number and, hence, 
avoid some of the limitations of the transformation method which were discussed in the main 

portion of this report. 

Symbols, references, and figures are as in the main portion of this report. 

EQUATIONS AND SOLUTION 

Governing Equation 

The small perturbation equation governing unsteady transonic flow as considered here for 

Mm = 1.0 in dimensionless form is 

(pYY + ‘pzz - 2 M2vxt - M21ptt = 0 

and for harmonic motion, equation (A-l) becomes 

+ ‘PO - 2 ikM 
2 

(poYY zz 
(pox + k2M2cpo = 0, 

(A-1) 

(A-2) 
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ikt 
where cp = cp e . 0 

Equation (A-2) is a linear equation with variable coefficients. The local Mach number 
on-the wing at its mean position is independent of the motion. 

The coordinate system used is shown in figure 4. 

Boundary Conditions 

The boundary conditions to be satisfied are: (1) any disturbances must vanish at infinity, 

and (2) the flow must be always tangent to the solid surface. The first condition is satisfied 

by the type of solution chosen, and the second condition can be written as 

+B(x, y, z, t) = 0. (A-3) 

The linearized tangency condition for the unsteady part is obtained as 

for harmonic motion. 

cpo, = h ox + ikh, on z=O (A-4) 

The linearized tangency condition shown in equation (A-4) has been completely un- 

coupled from the steady part, and this implies that the mean angle of attack, camber, and 

twist of the wing are small (fig. I). 

For Mco = 1 .O, as in the linearized case, it is assumed that no disturbances propagate 
upstream. Even though the mean local Mach number on the wing may be greater than, or 
less than, unity, the implication of the procedure is that the locally subsonic or supersonic 
character of the flow is not the predominant influence on the oscillatory potential. 

cpOZ (x , yt O+) = h OX 
+ ikh, , for (x, y) in S 

To, (x, y, O+) + ikv,(x, y, 0’) = 0 , for (x, y) in W 

‘PO (x, yt o’> = 0 I for (x, y) not in (S -t W). (A-5) 
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Doublet Solution 

The basic solution, representing a point doublet oriented parallel to the z-axis at the 
origin and satisfying the required condition at infinity for a small finite region on the wing 
where the value of M is considered to be constant, may be written for equation (A-2) as 

(0, x< 0 
qd (x, Yr GM) = 

I - ik zM 
2 (A-4 

2Y x2 
exp 1-f ik[x+M2(y2’z51],x>0, 

X 

in which M is regarded as a parameter rather than a flow influencing property. 

Equation (A-6) satisfies equation (A-2) only in a small finite region of the wing, so 
the solution may be considered to be of the locally linearized form. More generally, then, 
the solution of equation (A-2) for a distribution of doublets is given by 

cpo(% yr z; MI = ssp(P, @(pd(x-5, y--h; M)dldq, x>O, (A-7) 
(x-5bO 

where p(x, y) is the doublet strength. It has been shown in reference 5 for M = 1.0 that 

P (x, y) = ‘PO (x, yt o+) * (A-8) 

From equation (A-7), after taking the partial derivative with respect to z, one obtains 

cpoz k, y/ d = ss ~(5, 7) Jlk- I , y-3, z; M)dSdT , (A-9) 

(x-S)>0 

where 
f 0, x<o 

acPd 
$(x/y, O+; M) = - 

az 1 z+o+z 

I 

exp II - 
1 M2 2 7 ik (x + 2 3, x 1 O. 

(A-10) 

x ) 

In a manner paral le 
written as 

I to that for the linearized tangency condition, equation (A-9) may be 

w(x, y) = ff cpok, 7, O+) $(x-I, y-q, O+; M) Wq (A-l 1) 

s-tw 
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where w(x,y) =rpo (x,y,O+). 
Z 

and 

The doublet strength p can .be determined from equation (A-9), or by 

ff qo(x,y,O+) $(x-5, y-q; M)dSdq = w(x,y), for (x,y) in S 
St-W 

(A-l 2) 

( 1 &+ ik cp,(x,y,O+) = 0, for (x,y) in W (A-l 3) 

For a wing with an unswept trailing edge, equation (A-12) becomes 

ff 
cpo(x,y,O+) $(x-S, y-q; M)dSdq = w(x,y), for b,y) in s 

S 

(A-l 4) 

Thus, the doublet potential strength cpo can be evaluated with a predescribed downwash dis- 
tribution w on the wing planform. 

DOUBLET SONIC -BOX METHOD 

The concept or scheme for obtaining the approximate solution to equation (A-14) 
described in this section is essentially the same as that used in reference 5. The only dif- 
ference is the inclusion of the local Mach number in the integrand of the present case. 

For a wing lying close to the xy-plane, the planform (S) is replaced by a grid of square 
boxes (E) with their centers lying in S. Within each box, represented by its center, the 
flow properties and downwash are considered to be constant. The box having a center at 
(xi ,yi) is designated by Eii. With this replacement, equation (A-14) yields a system of 
linear algebraic equations for the cpoii’s as follows: 

(A-1 5) 

where M is considered to be a parameter only. 

Defining A as 
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A zj--- $(x,-c, yi-q; M)dSdr( 

E 
i’i’ 

d,Sdrl (A-’ 6, 

and introducing 

u = (x - S’)/H 

v = M(y - 3/H 

m = (i - i’) 

n=i -i’ 

t= kH 

into equation (A-16), one obtains 

A= &M{J$exp [-ii &(u+$)]dudv 

where integration limits are 

x-5 1 

U1=H-2 = 

u* = (i- ’ i’) + 7 

v1 
=M[v-i]=M[(j - iI> -!-]=M [m -i] 

v2 = M 
c 

(j - i’) + i 1 

(A-1 7) 

Since the integration in equation (A-17) is identical to that formulated by Rodemich 
and Andrew (ref. 5), the integration method developed in reference 5 can be adopted 
directly. Th e only difference is the inclusion of the local Mach number in equation (A-l 7’) 

which reduces identically to the expression used in reference 5 when M + 1 everywhere on 

the wing. 
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In order to maintain interchangeability of the sending and the receiving points and to 
minimize the accumulated error of integration around the boxes instead of the wing plan- 

form, the value of M in the expression v is considered to be that of the arithmetic mean 

of receiving and the sending points, i .e., 

M = ; [M(x,y) + M(S,ri)l. (~-18) 

The value of M outside the integration in equation (A-17) may be similarly taken as the 
mean value as shown in equation (A-18); but it may be adequate or even more appropriate 
to let M =M(S,ri), i.e., the Mach number of the sending points. This observation is 
based on inspection of equation (A-15) where it is seen that the local velocity potential is 
modified only by the corresponding local Mach number at the center of the i’j’-th box. 

All the equations required for carrying out the calculation of the transonic aerodynamic 
force coefficients with thickness effects have been reduced to the forms similar to those used 
in the original sonic-box method.computer program (ref. 5). Thus it can be quite easily 
modified to obtain numerical results with thickness effects without using the coordinate 
transformation technique described in the main body of the present report. The method 
described herein has avoided the difficulty of the fold-over wing problem encountered 
previously, but the basic restrictions still apply. For example, the Mach number distribu- 
tion on the wing must not be very different from that of the freestream to enable the local 
linearization concept to be applied; and the mean angle of attack, the camber of wing and 
the amplitude of oscillation must also be small so that the linearized tangency condition can 
be used. The mean local Mach number is considered to be a parameter, only, which cannot 
alter the wave characteristics of the disturbances in unsteady transonic flow. 

CONCLUDING REMARKS 

The approach described applies the local linearization method to obtain an approxima- 
tion to wing thickness effects as represented by the mean local Mach number in the unsteady. 
transonic flow analysis. The basic solution of the governing small-perturbation velocity- 
potential equation is modified by the mean local Mach number to account for thickness 
effects . 

The previous method for accomplishing this required a coordinate transformation which, 
for certain wings, resulted in a non-one-to-one wing planform transformation. It is shown 
that this new method for introducing the local Mach number into the sonic-box computer 
program does not have this limitation. 
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The equations to be used in the calculation of the aerodynamic force coefficients with 
thickness effects have been reduced to those forms used in the original sonic-box computer 
program; thus, only a minor modification to the original computer program is required to 
obtain numerical results. 
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